aluminum extrusions Pretoria

Aluminium Extrusion and Its Advantages or aluminum extrusions ?

Aluminium Extrusion process is undertaken by several companies today which offer extruded products to buyers. The extrusion process is generally utilized in production. It is used to create parts of homogeneous cross-sections and is done by squeezing the material all the way through an outlet under high-pressure. Aluminium extrusions are popular all over the world since the metal is easily available on the earth’s crust. Besides <strong>aluminum extrusions</strong> <strong> in Guide </strong>, aluminium is widely used in several applications and it has numerous advantages as well.

aluminium t section

Companies manufacturing extruded aluminium products offer extruded aluminium profiles, systems and finished products and semi-manufactured components. Enterprises manufacturing aluminium products are generally in search of products that can fulfill the needs of the customers. All through the manufacturing process, manufacturers must give close attention to quality, performance, economy and precision. Aluminium extrusion is generally simple, however, it might turn complex in case the demand of customers for extruded products differ.

aluminium frame

There is an assortment of aluminium extrusion profiles today in the market and people are keener to get the best product for any particular industry. If you are in the automobile industry and are in need of aluminium extruded products you must look for certain shapes that are just the apt for your industry. A company manufacturing aluminium extruded products manufacture according to the supply orders and are capable in offering all kinds of shapes. These extruded products are fabricated and customized and are unique according to needs.

extrusion company

There are several advantages to aluminium extrusion.

Aluminium is a widely available metal and through constant cross section several parts can be manufactured in the most reasonable way. The process of extrusion allows taking advantage of properties of aluminium and it expands. Thus, this manner indeed versatile as you can manufacture several shapes in just a simple process.

aluminium sections catalogue pdf

However, you need high-tech machinery for the process and you can produce shape indefinitely without spending a fortune in preparation costs. Hence, the process is totally economical. Roll-forming dies, in case you have heard about them they are costlier than extrusion die.

Aluminium extruded products have longer life than items made from steel or plastic. Besides, extrusion is meant to be the most environmentally friendly and economical solution. Aluminium as a metal even when not compared for its aluminium extrusion profiles and to weight properties. Even though it is light weight it has good strength.

extrusion company

Aluminium is used for thermal and electrical conductivity. It is not only affordable it is also flexible in terms of shapes and size. It can adept to high temperatures and are thus preferred as utensils when used for heating water or boiling rice. It is corrosion resistant and can offer you good service over years. If you want you can easily recycle the metal. After steel all over the world aluminium is the most trusted and used metal. It can be fabricated to several shapes right from sheets, geometric shapes, to foils, tube, rod and wire.

So, if you are out there looking for aluminium extrusion profiles you can trust the process with closed eyes.

Interesting Facts About aluminum extrusions in Reviews:

 About aluminum extrusions in Reviews:

aluminium extrusion profiles south africa

While aluminium is a very versatile material and aluminium doors can be suitably installed in a variety of indoor and outdoor contexts, two of the best places for the installation of aluminium doors are in industrial locations and as barriers between the inside and outside.

Aluminium doors are ideally suited to being installed as a barrier between indoor and outdoor environments because of their weatherproof and durable nature. This makes them a top choice for patio doors and café or bar doors leading to courtyards. Aluminium is one of best materials for patio door frames because the metal is a strong and very low-maintenance product. The advantages of installing aluminium framed doors as barriers between in and outdoors are largely due to the natural properties of the metal which make it resistant to corrosion as well as being impermeable and odourless. The aluminium framed doors do not rust and provide premium stability if installed correctly. Not only do doors of aluminium come in an extensive range of powder coated colours, they can also be carefully patterned for various aesthetic effects. Finally, aluminium framed doors are one of the best doors to be installed between interior and exterior because they won't warp or swell in damp conditions as wooden doors often do.

One of the second locations where doors of aluminium are best installed is in the heavy duty contexts of factories and warehouses where they are often the number one choice for a variety of applications. The popularity of aluminium doors in these environments is due again to the naturally strong, durable and low-maintenance nature of the metal. Aluminium is able to withstand any of the bumps and scrapes that are customary during the movement and transport of industrial machinery and products. Doors for industrial locations are made from large, high-strength metal panels that withstand the passage of oversize cargo and bulky machinery. Another reason why aluminium doors are such a top choice for heavy duty purposes is because the metal can be thermally treated to be scratch and dent resistant.

These are just too of the most popular locations for aluminium framed doors, but really, with such a versatile metal, the possible applications are endless. As well as providing a practical patio door and industrial door solution, glass and aluminium doors can be used inside the home in bathrooms and bedrooms as well as in the interiors or offices and other commercial constructions.

aluminum extrusions in Reviews

aluminium t section

When purchasing your aluminum profile system, it is important to use aluminum profile systems that represent the latest in technological progress. They are available and many have highly competitive prices.

What is an aluminum profile system?

Aluminum profile systems are extruded shapes (tubing, bar stock, angles, rods, ducts, channels, air supply systems, pipe racks, etc.) made from aluminum. Extrusion is a process by which different aluminum shapes are formed from a cylindrical hydraulic press. The press forces the aluminum through the die and the extruded aluminum results in the desire shape.

What is the history of aluminum extrusions?

Patented in 1970, the extrusion process was first used to make lead pipes. Lead, copper, iron, and steel have a much longer history than aluminum, which was first identified in 1807.

At first aluminum was considered more precious than gold. However, with the advent of the smelting process and the modern hot extrusion process in the 1880's, it became extremely affordable. Aluminum, the metal most used for extrusion, can now be used with both hot and cold extrusion processes.

What are the benefits of an aluminum profile system?

There are many reasons why an aluminum system is preferred over other tooling. Some of the most important reasons are that it is not only affordable, but also durable, lightweight, and corrosion resistant - and many of the components are reusable, thus lowering the cost.

Respected manufacturers of aluminum profile promise shortened lead times, which is very important to most customers. This is possible because fewer tools are required to produce the final product, the designs are simple, and no welding or painting is required.

These manufacturers usually have a large stock of shapes and finishes on hand. If a customer needs a shape different that what is normally carried, that shape can be custom-made.

What are the uses of aluminum profile systems?

After World War II, when aluminum extrusions were used in the manufacturing of aircraft and other military uses, new uses were quickly found to be applicable for other industries. Aluminum extrusion is even used in the space industry.

If you are not familiar with the uses of aluminum profile in today's world, you might be surprised to know that they are used in computers, fixtures, everyday household appliances, home furnishings and interior design, power tools, and window frames.

In the world of manufacturing, aluminum systems are used in conveyor frames, fixtures, construction, protective barriers, work tables, electrical components, work bins, car radiators, automobile body and frame components, drive shafts and cylinder liners, and in special and series machines.

Aluminum Garage Doors - 10 Benefits

aluminium trim profiles

High strength aluminium alloys.

The origin of aluminium alloys in aircraft construction started with the first practical all-metal aircraft in 1915 made by Junkers in Germany, of materials said to be `iron and steel'. Steel presented the advantages of a high modulus of elasticity, high proof stress and high tensile strength. Unfortunately these were accompanied by a high specific gravity, almost three times that of the aluminium alloys and about ten times that of plywood. Aircraft designers during the 1930s were therefore forced to use steel in its thinnest forms. To ensure stability against buckling of the thin plate, intricate shapes for spar sections were devised.

In 1909 Alfred Wilm, in Germany, accidentally discovered that an aluminium alloy containing 3.5 per cent copper, 0.5 per cent magnesium and silicon and iron, as unintended impurities, spontaneously hardened after quenching from about 480°C. The patent rights of this material were acquired by Durener Metallwerke who marketed the alloy under the name Duralumin. For half a century this alloy has been used in the wrought heat-treated, naturally aged condition. The improvements in these properties produced by artificial ageing at a raised temperature of, for example, 175°C, were not exploited in the aircraft industry until about 1934.

In addition to the development of duralumin (first used as a main structural material by Junkers in 1917) three other causes contributed to the replacement of steel by aluminium alloys. These were a better understanding of the process of heat treatment, the introduction of extrusions in a wide range of sections and the use of pure aluminium cladding to provide greater resistance to corrosion. By 1938, three groups of aluminium alloys dominated the field of aircraft construction and, in fact, they retain their importance to the present day. The groups are separated by virtue of their chemical composition, to which they owe their capacity for strengthening under heat treatment.

The first group is contained under the general name duralumin having a typical composition of: 4 per cent copper, 0.5 per cent magnesium, 0.5 per cent manganese, 0.3 per cent silicon, 0.2 per cent iron, with the remainder aluminium. The naturally aged version was covered by Air Ministry Specification DTD 18 issued in 1924, while artificially aged duralumin came under Specification DTD 111 in 1929. DTD 111 provided for slight reductions in 0.1 per cent proof stress and tensile strength.

The second group of aluminium alloys differs from duralumin chiefly by the introduction of 1 to 2 per cent of nickel, a high content of magnesium and possible variations in the amounts of copper, silicon and iron. `Y' alloy, the oldest member of the group, has a typical composition of. 4 per cent copper, 2 per cent nickel, 1.5 cent magnesium, the remainder being aluminium and was covered by Specification DTD 58A issued in 1927. Its most important property was its retention of strength at high temperatures, which meant that it was a particularly suitable material for aero engine pistons. Its use in airframe construction has been of a limited nature only. Research by Rolls-Royce and development by High Duty Alloys Ltd produced the `RR' series of alloys. Based on Y alloy, the RR alloys had some of the nickel replaced by iron and the copper reduced. One of the earliest of these alloys, RR56 had approximately half of the 2 per cent nickel replaced by iron, the copper content reduced from 4 to 2 per cent, and was used for forgings and extrusions in aero engines and airframes.

The third and latest group depends upon the inclusion of zinc and magnesium and their high strength. Covered by Specification DTD 363 issued in 1937, these alloys had a nominal composition: 2.5 per cent copper, 5 per cent zinc, 3 per cent magnesium and up to 1 per cent nickel. In modern versions of this alloy nickel has been eliminated and provision made for the addition of chromium and further amounts of manganese.

Aircraft structural aluminium.

Of the three basic structural materials, namely wood, steel and aluminium alloy, only wood is no longer of significance except in laminates for non-structural bulkheads, floorings and furnishings. Most modern aircraft still rely on modified forms of the high strength aerospace aluminium alloys which were introduced during the early part of the 20th century. Steels are used where high strength, high stiffness and wear resistance are required. Other materials, such as titanium and fibre-reinforced composites first used about 1950, are finding expanding uses in airframe construction.

profile extrusion